AQA Chemistry A-level

3.1.10: The Equilibrium Constant Detailed Notes

3.1.10.1 - Kp Constant

Kp is the equilibrium constant used for gaseous equilibria. All reactants and products must be in a gaseous state in order for Kp to be calculated.

Partial Pressure

Within a gaseous system, each gas has a partial pressure which adds up to give the total system pressure. This partial pressure of a substance is found using the molar fraction of that substance and the total pressure.

$$
\underset{\substack{\text { Pressure } \\ \text { of } \mathrm{A}}}{\text { Parial }}=\frac{\text { Moles of } \mathrm{A}}{\text { Total Moles }} \times \text { Total Pressure }
$$

Partial pressure of A would be shown as (pA).
Example:
Image courtesy of SlidePlayer
A mixture of gases contains $0.51 \mathrm{~mol}_{2}, 0.28 \mathrm{~mol} \mathrm{H}_{2}$, and $0.52 \mathrm{~mol} \mathrm{NH}_{3}$. If the total pressure of the mixture is 2.35 atm, what is the partial pressure of H_{2} ?

$$
\begin{aligned}
\text { Total moles in the system } & =0.51+0.28+0.52 \\
& =1.31 \text { moles }
\end{aligned}
$$

$$
\text { Molar fraction of } H_{2}=0.28 / 1.31
$$

$$
=0.21
$$

$$
\begin{aligned}
\left(\mathrm{pH}_{2}\right)=0.21 \times & 2.35 \\
& =0.50 \mathrm{~atm}
\end{aligned}
$$

Partial pressures are commonly measured in Pascals but can occasionally be measured in atmospheres.

Calculating Kp

Partial pressures allow the value of $K p$ for a gaseous equilibrium to be found. Kp is equal to the product of the partial pressures of products over the partial pressure of reactants. It is similar to Kc in that any variation in moles raises the partial pressure to a power of equal quantity to the number of moles.

$$
\begin{aligned}
2 \mathrm{~A}_{(\mathrm{g})}+3 \mathrm{~B}_{(\mathrm{g})} & \longrightarrow Y_{(\mathrm{g})}+2 Z_{(\mathrm{g})} \\
K p= & \frac{(\mathrm{pY})\left(\mathrm{p}^{2} Z\right)}{\left(\mathrm{p}^{2} \mathrm{~A}\right)\left(\mathrm{p}^{3} \mathrm{~B}\right)}
\end{aligned}
$$

